邬渊

职称:助理教授,博士生导师

毕业院校:加拿大卡尔顿大学

email:yuanwu@jlu.edu.cn

个人主页:

研究方向:迁移学习,机器学习泛化理论,大语言模型

个人简介

邬渊,吉林大学人工智能学院助理教授,博士生导师。研究方向为迁移学习,机器学习泛化理论。所涉及的应用有图像分类,图像语义分割,文本分类等。在AAAI,ECCV,ICASSP,AISTATS,TIST,IJCAI,ACL等国际会议\期刊发表多篇文章。


近几年计划的研究方向:(1) 大语言模型的评估 (The evaluation on large language models);(2) 可信大语言模型(Trustworthy large language models);(3)心理学与大语言模型的交叉研究(Applying psychology to improve large language models);(4)大模型驱动的数据增强方法(Data augmentation driven by large language models and diffusion models)。


欢迎对以上方向感兴趣的本科生、硕士生、博士生咨询!(本组2025年博士名额已满。)

工作经历

2022.11-至今 吉林大学人工智能学院 助理教授

教育经历

2018.09-2022.06   加拿大卡尔顿大学 计算机科学 博士 (导师:Dr. Ahemd El-Roby, Dr. Diana Inkpen.)

2015.09-2018.07   兰州大学 软件工程 硕士 (导师:李廉)

2008.09-2012.06   北京化工大学 计算机科学与技术 学士

论文选

详见个人Google scholar:https://scholar.google.com/citations?user=KVeRu2QAAAAJ&hl=zh-CN

部分论文信息如下:

[1] Wu, Y., & Guo, Y. (2020, April). Dual adversarial co-learning for multi-domain text classification. In Proceedings of the AAAI conference on artificial intelligence (Vol. 34, No. 04, pp. 6438-6445). (第一作者,AAAI, CCF-A, 清华A类)

[2] Wu, Y., Inkpen, D., & El-Roby, A. (2020). Dual mixup regularized learning for adversarial domain adaptation. In Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part XXIX 16 (pp. 540-555). Springer International Publishing. (第一作者,ECCV, CCF-B, 清华A类)

[3] Wu, Y., Inkpen, D., & El-Roby, A. (2021, June). Mixup regularized adversarial networks for multi-domain text classification. In ICASSP 2021-2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (pp. 7733-7737). IEEE. (第一作者,ICASSP, CCF-B, 清华B类)

[4] Wu, Y., Inkpen, D., & El-Roby, A. (2021). Towards category and domain alignment: Category-invariant feature enhancement for adversarial domain adaptation. In Proceedings of the IEEE/CVF International Conference on Computer Vision workshops (pp. 132-141). (第一作者, ICCV workshop)

[5] Wu, Y., Inkpen, D., & El-Roby, A. (2021, April). Conditional Adversarial Networks for Multi-Domain Text Classification. In Proceedings of the Second Workshop on Domain Adaptation for NLP (pp. 16-27). (第一作者, EACL workshop)

[6] Wu, Y., Inkpen, D., & El-Roby, A. (2022, May). Co-regularized adversarial learning for multi-domain text classification. In International Conference on Artificial Intelligence and Statistics (pp. 6690-6701). PMLR. (第一作者,AISTATS, CCF-C, 清华B类)

[7] Wu, Y., Inkpen, D., & El-Roby, A. (2022, May). Maximum Batch Frobenius Norm for Multi-Domain Text Classification. In ICASSP 2022-2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (pp. 3763-3767). IEEE. (第一作者,ICASSP, CCF-B, 清华B类)

[8] Chang, Y., Wang, X., Wang, J., Wu, Y., Yang, L., Zhu, K., ... & Xie, X. (2023). A survey on evaluation of large language models. ACM Transactions on Intelligent Systems and Technology. (通讯作者)

[9] Hu, J., & Wu, Y. (2024, April). Regularized Conditional Alignment for Multi-Domain Text Classification. In ICASSP 2024 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (pp. 5645-5649). IEEE. (通讯作者,ICASSP, CCF-B, 清华B类)

[10] Wang, X., & Wu, Y. (2024). NegativePrompt: Leveraging Psychology for Large Language Models Enhancement via Negative Emotional Stimuli. This paper will appear at IJCAI 2024. (通讯作者,IJCAI, CCF-A, 清华B类)

[11] Zhou, Y., Guo, C., Wang, X., Chang, Y., & Wu, Y. (2024). A Survey on Data Augmentation in Large Model Era. arXiv preprint arXiv:2401.15422.(通讯作者)

[12] Xia, T., Yu, B., Wu, Y., Chang, Y., & Zhou, C. (2024). Language Models can Evaluate Themselves via Probability Discrepancy. This paper will appear at ACL Findings 2024. (通讯作者,ACL, CCF-A, 清华A类)

[13] Wu, Y. (2024). Margin Discrepancy-based Adversarial Training for Multi-Domain Text Classification. This paper will appear at NLPCC 2024. (独立作者, NLPCC, CCF-C)


社会兼职

会议审稿人: AAAI, EMNLP, AISTATS, IJCAI, ACL, ICASSP.

期刊审稿人: Information Science, IEEE Transactions on Cybernetics, npj Digital Medicine, Financial Innovation, IEEE Transactions on Instrumentation and Measurement.

获奖情况

EACL 2021, the Second Workshop on Domain Adaptation for NLP, Best paper award.

AISTATS 2022, Outstanding reviewer award.

指导学生

夏婷玉,博士,2021- ,与常毅老师共同指导,1 WWW (CCF-A), 1 EMNLP (CCF-B),1 ACL (CCF-A) 目前在阿里巴巴达摩院实习(实习方向:大模型评测)。

李晋南,博士,2022- ,与常毅老师共同指导。

常雨鹏,博士,2023- ,1 TIST。

周悦,博士,2024- 。

李金哲,直博,2025- ,与常毅老师共同指导。

王旭,硕士,2022-,1 TIST, 1 IJCAI (CCF-A),目前在美团实习(实习方向:大模型评测)。

李耿旭,硕士,2022- 。

李亚寒,硕士,2023- 。

郭晨璐,硕士,2023- 。

李致远,硕士,2024- 。

杨海旗,硕士,2024- 。

毕业学生

王蕊,硕士,2021-2024,1 Siggraph Asia Poster (EI)。

胡竣涛,硕士,2021-2024, 1 ICASSP (CCF-B),去向:字节跳动。

王翊,本科,2020-2024,实习经历:小马智行(提示工程师);去向:香港科技大学(广州分校)。


返回上一层