部分论文信息:
[1]. Jifeng Hu, Yanchao Sun, Hechang Chen*, Sili Huang, Haiyin Piao, Yi Chang, Lichao Sun*. Distributional Reward Estimation for Effective Multi-agent Deep Reinforcement Learning. In Proceedings of the International Conference on the Advances in Neural Information Processing Systems (NeurIPS’22), New Orleans, USA, Nov 28-Dec 9, 35, (2022): 12619-12632. (CCF A)
[2]. Sili Huang, Yanchao Sun, Jifeng Hu, Siyuan Guo, Bo Yang*, Hechang Chen*, Yi Chang*, Lichao Sun. Learning Generalizable Agents via Saliency-Guided Features Decorrelation. Advances in Neural Information Processing Systems (NeurIPS’23), New Orleans, USA, Dec 10-16, 36, (2023): 39363-39381. (CCF A)
[3]. Sili Huang, Jifeng Hu, Zhejian Yang, Liwei Yang, Tao Luo, Hechang Chen*, Lichao Sun, Bo Yang*. Decision Mamba: Reinforcement Learning via Hybrid Selective Sequence Modeling. Advances in Neural Information Processing Systems (NeurIPS’24), New Orleans, USA, Dec 10-16, 37, (2024): 11145-1154. (CCF A)
[4]. Siyuan Guo, Cheng Deng, Ying Wen, Hechang Chen*, Yi Chang*, Jun Wang*. DS-Agent: Automated Data Science by Empowering Large Language Models with Case-Based Reasoning. The Forty-first International Conference on Machine Learning (ICML’24), Vienna, Austria, Jul 21-Jul 27, 235(2024): 16813-16848. (CCF A)
[5]. Sili Huang, Jifeng Hu, Hechang Chen*, Lichao Sun, Bo Yang*. In-Context Decision Transformer: Reinforcement Learning via Hierarchical Chain-of-Thought. The Forty-first International Conference on Machine Learning (ICML’24), Vienna, Austria, Jul 21-Jul 27, 2024, v235: 19871-19885. (CCF A)
[6]. Shisong Tang, Chao Cui, Fan Li, Jiechao Gao, Hechang Chen. Calibrating Video Watch-time Predictions with Credible Prototype Alignment. The Forty-second International Conference on Machine Learning (ICML’25), Vancouver, Canada, Jul 13-Jul 19, 2025, pp: 1-9. (CCF A)
[7]. Siyuan Guo, Lixin Zou, Hechang Chen*, Bohao Qu, Haotian Chi, Philip S. Yu, Yi Chang*. Sample Efficient Offline-to-Online Reinforcement Learning. IEEE Transactions on Knowledge and Data Engineering (TKDE), 2024, 36(3), pp: 1299-1310. (CCF A)
[8]. Xinqi Du, Ziyue Li, Cheng Long, Yongheng Xing, Philip S. Yu, Hechang Chen*. FELight: Fairness-Aware Traffic Signal Control via Sample-Efficient Reinforcement Learning. IEEE Transactions on Knowledge and Data Engineering (TKDE), 2024, 36(9), pp: 4678-4692. (CCF A)
[9]. Songwei Zhao, Bo Yu, Kang Yang, Sinuo Zhang, Jifeng Hu, Yuan Jiang, Philip S. Yu, and Hechang Chen*. A Flexible Diffusion Convolution for Graph Neural Networks. IEEE Transactions on Knowledge and Data Engineering (TKDE), 2025, pp: 1-14. (CCF A)
[10]. Fan Li, Xu Si, Shisong Tang, Dingmin Wang, Kunyan Han, Bing Han, Guorui Zhou, Yang Song, Hechang Chen*. Contextual Distillation Model for Diversified Recommendation. The 30th SIGKDD Conference on Knowledge Discovery and Data Mining (KDD’24), Barcelona, Spain, Aug 25-Aug 29, (2024): 5307-5316. (CCF A)
[11]. Siyuan Guo, Huiwu Liu, Xiaolong Chen, Yuming Xie, Liang Zhang, Tao Han, Hechang Chen*, Yi Chang*, Jun Wang*. Optimizing Case-Based Reasoning System for Functional Test Script Generation with Large Language Models. The 31th SIGKDD Conference on Knowledge Discovery and Data Mining (KDD’25), Toronto, Canada, Aug 3-Aug 7, pp: 1-9. (CCF A)
[12]. Siyuan Guo, Lixin Zou, Yiding Liu, Wenwen Ye, Suqi Cheng, Shuaiqiang Wang, Hechang Chen*, Dawei Yin, Yi chang. Enhanced Doubly Robust Learning for Debiasing Post-Click Conversion Rate Estimation. In Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR’21), Virtual Event, Canada, July 11–15, 2021: 275-284. (CCF A)
[13]. Xing Chen, Dongcui Diao, Hechang Chen*, Hengshuai Yao, Haiyin Piao, Zhixiao Sun, Zhiwei Yang, Randy Goebel, Bei Jiang, Yi Chang*. The Sufficiency of Off-policyness and Soft Clipping: PPO is Still Insufficient According to an Off-policy Measure. In Proceedings of the 37th International Conference on the Association for the Advancement of Artificial Intelligence (AAAI’23), 2023, Feb. 07-14, Washington D.C., USA, 37, pp: 7078-7086. (CCF A)
[14]. Songwei Zhao, Yuan Jiang*, Zijing Zhang, Yang Yu, Hechang Chen*. GRAIN: Multi-Granular and Implicit Information Aggregation Graph Neural Network for Heterophilous Graphs. In Proceedings of the 39th International Conference on the Association for the Advancement of Artificial Intelligence (AAAI’25), 2025, pp: 1-8. (CCF A)
[15]. Zhiwei Yang, Jing Ma, Hechang Chen*, Jiawei Zhang, Yi Chang*. Context-Aware Attentive Multilevel Feature Fusion for Named Entity Recognition. IEEE Transactions on Neural Networks and Learning Systems (TNNLS), 2024, 35(1): 973-984. (CAAI A, 中科院1区)
[16]. Zhaogeng Liu, Jielong Yang*, Xionghu Zhong, Wenwu Wang, Hechang Chen*, and Yi Chang. A Novel Composite Graph Neural Network. IEEE Transactions on Neural Networks and Learning Systems (TNNLS), 2023, 35(10): 13411-13425. (CAAI A, 中科院1区)
[17]. Liu Zhaogeng, Ji Feng, Yang Jielong*, Cao Xiaofeng, Zhang Muhan, Chen Hechang*, Chang Yi*. Refining Euclidean Obfuscatory Nodes Helps: A Joint-Space Graph Learning Method for Graph Neural Networks. IEEE Transactions on Neural Networks and Learning Systems (TNNLS), 2024, 35(9): 11720-11733. (CAAI A, 中科院1区)
[18]. Sili Huang, Hechang Chen∗, Haiyin Piao, Zhixiao Sun, Yi Chang, Lichao Sun, Bo Yang∗. Boosting Weak-to-Strong Agents in Multi-Agent Reinforcement Learning via Balanced PPO. IEEE Transactions on Neural Networks and Learning Systems (TNNLS), 2024. 1-14. (CAAI A, 中科院1区)
[19]. Sili Huang, Jifeng Hu, Hechang Chen*, Peng Cui, Haiyin Piao, Lichao Sun, Bo Yang*. Generalizable Causal Reinforcement Learning for Out-of-distribution Environments. IEEE Transactions on Industrial Informatics (TII), 2025, pp: 1-14. (中科院1区)
[20]. Bo Yang, Hongbin Pei, Hechang Chen, Jiming Liu, Shang Xia. Characterizing and Discovering Spatiotemporal Social Contact Patterns for Healthcare. IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), 2017, 39(8): 1532-1546. (CCF A)