李向涛

职称:教授、博士生导师

毕业院校:东北师范大大学

email:lixt314@jlu.edu.cn

个人主页:https://lixt314.github.io/BDCI.github.io//

研究方向:生物信息学、演化计算、深度学习、数据挖掘

个人简介

李向涛,男,吉林大学人工智能学院教授,2021年入选吉林省拔尖创新人才,入选斯坦福大学2020年和2021年发布的全球前 2%顶尖科学家榜单,连续主持国家自然科学面上基金和青年基金,吉林省优秀青年人才基金项目各一项,累积经费达到350万元。以第一作者或通讯作者在学术期刊上发表相关论文约100篇,其中中科院二区以上70余篇,中科院一区及IEEE Trans约40篇,其中IEEE Transactions on Cybernetics 4篇(IF=19.118),Bioinformatics 4篇(IF=6.937),Briefings in Bioinformatics 11篇(IF=13.994), IEEE Transactions on Systems, Man, and Cybernetics: Systems 1篇(IF=13.451), iScience 1篇(IF=6.107), AAAI 2篇(CCF A),IEEE/ACM Transactions on Computational Biology and Bioinformatics 6篇,IEEE Journal of Biomedical and Health Informatics 1篇, IEEE Transactions on NanoBioscience 2篇,IEEE Transactions on Engineering Management 2篇,Information Sciences 3篇)。

根据Google Scholar统计,论文被引用3000余次,H-index=29。其中,一篇论文入选ESI高被引论文(被引频次前1%),单篇引用最高次数270次,7篇论文引用次数超过100次。带领团队以第一完成人及第二完成人完成省级自然科学学术成果奖各一项。围绕近年来国内外演化计算与无监督学习计算算法层面的工作进展,出版英文专著《Natural Computing for Unsupervised Learning》,由Springer 出版社出版。也是多个国际SCI期刊PeerJ Computer Science,Frontiers in Bioinformatics,Current Bioinformatics,Current Gene Therapy与Scientific Reports副主编或编委。

个人主页:https://lixt314.github.io/BDCI.github.io///publications_Xiangtao/


工作经历

2020.03 —— 至今          吉林大学人工智能学院 教授

2017.03 —— 2019.04    香港城市大学 高级研究助理

2015.11 —— 2016.11    英国萨里大学 访问学者

2015.07 —— 2020.03    东北师范大学信息科学与技术学院 副教授

教育经历

2012.09 —— 2015.06  东北师范大学 博士

2009.09 —— 2012.06  东北师范大学 硕士

2005.09 —— 2009.06  东北师范大学 本科

科研项目

作为主持国家自然科学基金2项、吉林省自然科学基金1项、吉林省优秀人才基金1项,累计参与项目达10项。

1.国家自然科学基金委员会,面上项目,62076109,高维稀疏数据下进化深度聚类方法研究,2021-01至2024-12,59万元,主持;

2. 国家自然科学基金委员会,青年项目,61603087,基于代理模型和层次进化算法的 多目标双 层规划问题研究,2017-01至2019-12,21万元,主持;

3. 吉林省科技厅优秀青年人才基金项目,20190103006JH,基于多目标群智能算法的混合调度问题研究,2019-01至2020-12,10万元,主持;

4.吉林省自然科学基金面上项目,20160101253JC,基于代理模型和层次进化算法的  双层规划问题研究2016-01至2018-12,10万元,主持。

论文选

部分论文信息如下:

1.Y. Cheng, Y. Su, Z. Yu, Y. Liang, K. Wong, X. Li*, Unsupervised Deep Embedded Fusion Representation of Single-cell Transcriptomics, Thirty-Seventh AAAI Conference on Artificial Intelligence (AAAI 2023), 2022.  (Q1)

2. F. Wang, T. Gao, J. Lin, Z. Zheng, L. Huang, M. Toseef, X. Li*, K. Wong*, GILoop: robust chromatin loop calling across multiple sequencing depths on Hi-C data, iScience, 2022. (IF=6.107, Cell Press)

3. L. Huang, J. Lin, R. Liu, Z. Zhang, L. Meng, X. Chen, X. Li*, K. Wong*, CoaDTI: Multi-modal Co-attention based framework for drug-target interaction annotation, Briefings in Bioinformatics, 2022. (IF=13.994, Q1)

4. Y. Su, H. Zhu, K. Wong, Y. Chang, X. Li*, Hyperspectral Image Denoising via Weighted Multidirectional Low-rank Tensor Recovery, IEEE Transactions on Cybernetics, 2022. (IF=19.118,Q1)

5. Y. Su, F. Wang, S. Zhang, Y. Liang, K. Wong, X. Li*, scWMC: Weighted Matrix Completion-based Imputation of scRNA-seq Data via Prior Subspace Information, Bioinformatics, 2022. (IF=6.931,Q1)

6.   F. Lu, Z. Yu, Y. Wang, Z. Ma, K. Wong, X. Li*, GMHCC: High-throughput Analysis of Biomolecular Data using Graph-based Multiple Hierarchical Consensus Clustering, Bioinformatics, 2022. (IF=6.937,Q1)

7.  M. Toseef, X. Li*, K. Wong*, Reducing healthcare disparities using multiple multiethnic data distributions with fine-tuning of transfer learning, Briefings in Bioinformatics, 2022. (IF=11.622, Q1)

8.  Y. Yang, Z. Hou, Y. Wang, H. Ma, P. Sun, Z. Ma, K. Wong, X. Li*, HCRNet: High-throughput circRNA-Binding Event Identification from CLIP-seq Data using Deep Temporal Convolutional Network, Briefings in Bioinformatics, 2022. (IF=11.622, Q1)

9.Z. Yu, Y. Lu, Y. Wang, F. Tang, K. Wong, X. Li*, ZINB-based Graph Embedding Autoencoder for Single-cell RNA-seq Interpretations, Thirty-Sixth AAAI Conference on Artificial Intelligence (AAAI 2022), 2021. (Q1, Oral)

10.  Y. Wang, K. Wong, X. Li*, Exploring High-throughput Biomolecular Data with Multiobjective Robust Continuous Clustering, Information Sciences, 2021. (IF=6.795, Q1)

11.  Y. Wang, Y. Yang, Z. Ma, K. Wong, X. Li*, EDCNN: Identification of Genome-Wide RNA-binding Proteins Using Evolutionary Deep Convolutional Neural Network, Bioinformatics, 2021. (IF=6.937, Q1)

12.  L. Huang, J. Lin, X. Li*, L. Song, Z. Zheng, and K. Wong*, EGFI: Drug-Drug Interaction Extraction and Generation with Fusion of Enriched Entity and Sentence Information, Briefings in Bioinformatics, 2021. (IF=11.622, Q1)

13.  Y. Wang, C. Bian, K. Wong, X. Li*, S. Yang. Multiobjective Deep Clustering and Its Applications in Single-cell RNA-seq Data, IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2021. (IF=13.451, Q1)

14.  X. Li, S. Li, L. Huang, S. Zhang, K. Wong. High-throughput Single-cell RNA-seq Data Imputation and Characterization with Surrogate-assisted Automated Deep Learning, Briefings in Bioinformatics, 2021. (IF=11.622, Q1)

15.  Z. Hou, Y. Yang, H. Li, K. Wong, X. Li*. iDeepSubMito: Identification of protein sub-mitochondrial localization with deep learning, Briefings in Bioinformatics, 2021. (IF=11.622, Q1)

16.  Y. Wang, X. Li*, K. Wong, Y. Chang, S. Yang. Evolutionary Multiobjective Clustering Algorithms with Ensemble for Patient Stratification, IEEE Transactions on Cybernetics, 2021. (IF=11.448, Q1)

17.  Z. Yu, C. Bian, G. Liu, S. Zhang, K. Wong, X. Li*. Elucidating Transcriptomic Profiles from Single-cell RNA sequencing Data using Nature-Inspired Compressed Sensing, Briefings in Bioinformatics, 2021. (IF=11.622, Q1)

18. X. Li, S. Zhang, K. Wong. Deep Embedded Clustering with Multiple Objectives on scRNA-seq Data, Briefings in Bioinformatics, 2021. (IF=11.622, Q1)

19.  Y. Yang, S. Li, Y. Wang, K. Wong, X. Li*. Identification of Haploinsufficient Genes from Epigenomic Data using Deep Forest, Briefings in Bioinformatics, 2020. (IF=11.622, Q1)

20. Zhang S, Li X, Lin Q, Wong KC. Uncovering the key dimensions of high-throughput biomolecular data using deep learning,Nucleic Acids Research, 2020. (IF=16.971, Q1)

21.  X. Li, S. Li, Y. Wang, S. Zhang, K. Wong. Identification of Pan-cancer Ras Pathway Activation with Deep Learning, Briefings in Bioinformatics, 2020. (IF=11.622, Q1)

22.  Y. Yang, Z. Hou, Z. Ma, X. Li*, K. Wong*, iCircRBP-DHN: identification of circRNA-RBP interaction sites using deep hierarchical network, Briefings in Bioinformatics, 2020. (IF=11.622, Q1)

23.  K.C. Wong J. Lin, X. Li, Q. Lin; C. Liang, Y. Song, Hterodimeric DNA Motif Synthesis and Validations, Nucleic Acids Research, 2019. (IF=16.971, Q1)

24.  X. Li, S. Zhang, K. Wong. Multiobjective Genome-Wide RNA-Binding Event Identification from CLIP-seq Data, IEEE Transactions on Cybernetics, doi.10.1109/TCYB.2019.2960515, 2019. (IF=11.448, Q1)

25.  X. Li, K. Wong. Evolutionary Multi-objective Clustering and Its Applications to Patient Stratification, IEEE Transactions on Cybernetics, doi.10.1109/TCYB.2018.2817480, 2018. (IF=11.448, Q1)

26.  Zhang S, Li X, Lin Q and Wong KC. Nature-Inspired Compressed Sensing for Transcriptomic Profiling From Random Composite Measurements.IEEE Transactions on Cybernetics, 2019.(IF=11.448, Q1)

27.  X. Li, S. Zhang, K. Wong. Single-cell RNA-seq Interpretations using Evolutionary Multiobjective Ensemble Pruning, Bioinformatics, 2019, doi. 10.1093/bioinformatics/bty1056. (IF=6.937, Q1)

28.  Zhang S,Li X, Lin Q, Wong KC. Synergizing CRISPR/Cas9 Off-Target Predictions for Ensemble Insights and Practical Applications. Bioinformatics, 2019, 35 (7): 1108-1115. (IF=6.937,Q1)

29.  X. Li, K. Wong. Multiobjective Patient Stratification using Evolutionary Multiobjective Optimization. IEEE Journal of Biomedical and Health Informatics, doi.10.1109/JBHI.2017.2769711, 2017. (Q1)

30.  X. Li, M. Li, Multiobjective Local Search algorithm based decomposition for Multiobjective Permutation Flowshop Scheduling Problem, IEEE Transactions on Engineering Management, 2015, 62(4): 544-557.(IF=6.146, Top journal for Engineering Management)

31.  X. Li, S. Ma, Multi-objective Discrete Artificial Bee Colony Algorithm for Multi-objective Permutation Flow Shop Scheduling Problem with Sequence Dependent Setup Times, IEEE Transactions on Engineering Management, 64(2)(2016): 149-165. (IF=6.146, Top journal for Engineering Management)

32.  X. Li, S. Zhang, K. Wong. Evolving Transcriptomic Profiles from Single-cell RNA-seq Data using Nature-Inspired Multiobjective Optimization, IEEE/ACM Transactions on Computational Biology and Bioinformatics, doi. 10.1109/TCBB.2020.2971993, 2020.

33.  Y. Wang, Q. Ma, K. Wong, X. Li*. Evolving Multiobjective Cancer Subtype Diagnosis from Cancer Gene Expression Data, IEEE/ACM Transactions on Computational Biology and Bioinformatics, doi.10.1109/TCBB.2020.2974953, 2020.

34.  X. Li, K. Wong. Single-Cell RNA-seq Data Interpretation by Evolutionary Multiobjective Clustering, IEEE/ACM Transactions on Computational Biology and Bioinformatics, doi.10.1109/TCBB.2019.2906601, 2019.

35.  X. Li, S. Zhang, K. Wong. Nature-Inspired Multiobjective Epistasis Elucidation from Genome-Wide Association Studies, IEEE/ACM Transactions on Computational Biology and Bioinformatics, doi. 10.1109/TCBB.2018.2849759, 2018.

36.  X. Li, K. Wong. Elucidating Genome-Wide Protein-RNA Interactions using Differential Evolution, IEEE/ACM Transactions on Computational Biology and Bioinformatics, doi. 10.1109/TCBB.2017.2776224, 2017.

37.  X. Li, K. Wong, A Comparative Study for Identifying the Chromosome-Wide Spatial Clusters from High-Throughput Chromatin Conformation Capture data, IEEE/ACM Transactions on Computational Biology and Bioinformatics, doi: 10.1109/TCBB.2017.2684800, 2017.

38.  Wong, K. C., Yan, S., Lin, Q., X. Li, & Peng, C. Deleterious Non-Synonymous Single Nucleotide Polymorphism Predictions on Human Transcription Factors. IEEE/ACM transactions on computational biology and bioinformatics. 2019.

39.  X. Li, M. Yin, Multiobjective Binary Biogeography based Optimization based Feature Selection for Gene Expression Data, IEEE Transactions on NanoBioscience, 12 (4) (2013): 343- 353.

40.  X. Li, S. Ma, K. Wong, Evolving Spatial Clusters of Genomic Regions from High-Throughput Chromatin Conformation Capture data, IEEE Transactions on NanoBioscience,16(6) (2017), 400-407.

41.  Y. Wang, B. Liu, Z. Ma, K. Wong, X. Li*, Nature-Inspired Multiobjective Cancer Subtype Diagnosis, IEEE Journal of Translational Engineering in Health and Medicine, Accepted, 2019.

42.  X. Li, M. Yin, Modified Cuckoo search algorithm with self adaptive parameter method, Information Sciences, 2015, 298:80-97. (IF=6.795, Q1)

43.  Y. Wang, Z. Ma, K. Wong, X. Li*, Nature-Inspired Multiobjective Patient Stratification from Cancer Gene Expression Data, Information Sciences, 2020, Accepted. (IF=6.795, Q1)

44.  X. Wang, Y. Wang, K. Wong, X. Li*, A Self-adaptive Weighted Differential Evolution Approach for Large-scale Feature Selection, Knowledge-based Systems, 2021. (IF=8.038, Q1)

45.  H. Zhu, Y. Wang*, X. Li*, UCAV Path Planning for Avoiding Obstacles using Cooperative Co-evolution Spider Monkey Optimization,Knowledge-based Systems, 2022. (IF=8.038, Q1)

46.  C. Bian, H. Gao, Y. Wang*, K. Wong, X. Li*, scEFSC: Accurate Single-cell RNA-seq Data Analysis via Ensemble Consensus Clustering Based on Multiple Feature Selections, Computational and Structural Biotechnology Journal, 2022. (IF=7.271)

著作教材

Xiangtao, Li. & Ka-Chun, Wong. (2018). Natural Computing for Unsupervised Learning.

获奖情况

吉林省学术成果奖2项

吉林省科学技术奖二等奖1项

社会兼职

副主编及编委:

Current Bioinformatics (2021~)(SCI Index, IF=3.543)

Eneriges(2021~)(SCI Index, IF=3.004)

Current Gene Therapy(2021~)(SCI Index, IF=4.676)

PeerJ Computer Science(2021~) (SCI Index, IF=2.41)

IEEE Access (2017-2022) (SCI Index, IF= 4.098)

Mini-Reviews in Medicinal Chemistry (2019~) (SCI Index, IF=2.842)

Scientific Reports (2017~) (SCI Index, IF=4.122)

PLoS One (2017~) (SCI Index, IF=2.806)

特刊:

[1]“Recent Computational Methods in Knowledge Engineering and Intelligence Computation”, IEEE Access, 2017, Lead Associate Editor.

[2]“Evolutionary Multi-objective Optimization for Solving Complex Engineering Problems”, Advances in Mechanical Engineering, 2018, Lead Guest Editor.

[3]“Evolutionary Deep Learning in Cancer Diagnoses”, Frontiers in Genetics, 2018, Lead Guest Editor

[4]“Data Science and Modeling in Biology, Health, and Medicine”, CMES: Computer Modeling in Engineering & Sciences, 2019, Guest Editor

返回上一层